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LE'ITER TO THE EDITOR 

2 (N) generalisation of the Baxter-Wu model 

Francisco C Alcarazt and Laurence Jacobs 
Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA 

Received 22 February 1982 

Abstract. A two-dimensional model of the dynamics of Z ( N )  spins on a triangular lattice 
with three-body interactions is analysed. The properties of the model under duality are 
shown to be identical to those of a wide class of models in two, three and four dimensions. 
Monte Carlo simulations reveal the existence of three phases for N >4, with an intermedi- 
ate phase which is most likely soft. 

A profound and, as yet, unclear relationship seems to exist between a class of spin 
systems in two and three dimensions with global or less than globrtl Z ( N )  symmetry 
and gauge theories in four dimensions with a local Z ( N )  symmetry. At the root of 
this relationship seems to be the response of these models to a duality transformation. 
With this in mind, we have constructed a two-dimensional model of Z ( N )  spins which 
has the same duality properties as the two-dimensional clock model on a square lattice 
(Elitzur et af 1979, Horn er af 1979, Ukawa et af 1980, Cardy 1980, Alcaraz and 
Koberle 1981), a four-spin model defined on a face-centred cubic lattice (Alcaraz et 
af 1981, 1982b) and a four-dimensional lattice gauge theory (Elitzur et af 1979, Horn 
et af 1979, Creutz et af 1979a, b, Ukawa et af 1980) with Wilson's action (Wilson 
1974). The model turns out to be a generalisation of the solvable Baxter-Wu model 
(Baxter and Wu 1973); it is defined by spins which take the values exp (27rinlN) with 
n = 0, 1, . . . , N - 1, on a triangular lattice with Hamiltonian 

where the triangle variables S, are defined by the product of three spins occupying 
the vertices of an elementary triangle and the sum is over all such simplexes. The 
Baxter-Wu model corresponds to N = 2 whereas the N + 00 limit, the U( 1) model, 
seems to be related to two-dimensional melting (Nelson 1978, Nelson and Halperin 
1978, Young 1979). A detailed analysis of this connection is presently under investiga- 
tion (Alcaraz et a1 1982a). 

Notice that the model defined by (1) does not have the global Z ( N )  group as a 
symmetry; rather, it is invariant under Z ( N )  transformations which act only on the 
spins defining an elementary hexagonal sublattice. The rich phase structure of the 
model is due to the possibility of spontaneously breaking these almost global sym- 
metries involving 3 of the spins. Using standard techniques (Savit 1980) one can show 
(Alcaraz and Jacobs 1982) that the Villain approximation to the partition function 
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defined by (1) satisfies 

where c is a field-independent factor and /3*=N2/4.rr2p2. That is, the theory is 
self-dual. 

It is possible to define the most general ferromagnetic triplet model on this lattice. 
The Hamiltonian is given by a sum of terms of the form given in (1)  

(3) 
H = - q  1 J, - ( S , + S 5 2 ) )  

I u = l 2  

where M is the integer part of N / 2  and J, are M positive coupling constants. The 
vector model studied here corresponds to the case J, = JS,,,. Defining the Boltzmann 
weights by 

one finds that 

with the dual weights x:  given by the Z ( N )  Fourier transform of (4) .  Since xN-€  =,ye,  
it follows that 

which is identical to the corresponding equation for the class of Z ( N )  models men- 
tioned above. Thus all conclusions drawn from duality in those models apply in our 
case as well. In particular, this implies that the models for 2(2 ) ,  2(3 and Z ( 4 )  are 

2 In( 1 + &)/3 and a(&) = 2@(Z2). Moreover, while a single phase transition must 
occur at a self-dual point, multiple transitions are certainly allowed; the properties 
of one another being related by duality. 

Details of our numerical procedure will be reported elsewhere (Alcaraz and Jacobs 
1982); here we shall mention the main results which are available at present. 

The Baxter-Wu model, the N = 2 special case of our theory, is solvable (Baxter 
and Wu 1973) and known to undergo a single second-order transition of a peculiar 
nature at the Onsager temperature (Domany and Riedel 1978, Kinzel et a1 1981). It 
is believed that this model belongs to the four-state Potts universality class. This is, 
or course, validated by our numerical results. However, both the Z ( 3 )  as well as the 
Z ( 4 )  models undergo strong first-order transitions at their self-dual points with latent 
heats which are roughly 80% and SO%, respectively, of the energy of the high- 
temperature phase at criticality. A bifurcation seems to appear at N = 5  and a 
three-phase structure becomes evident for N 2 6 ,  in full analogy with the class of 
Z ( N )  models mentioned above. Moreover, consistent with general arguments drawn 
from an analysis of the topological excitations of the theory (Savit 1980), for N 3 5 ,  
the high-temperature transition point, Pf, becomes essentially independent of N and 

self-dual; their self-dual points being given by a(Z2) = In (1 + J 2) /2 ,  a(&) = 
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assumes its N + a, U( 1) value &(U( 1)) = 1. Again, as expected from general argu- 
ments, the low-temperature transition point pi' scales with the inverse gap, approach- 
ing zero temperature as 1/N2 for large N. Thus, we find 

(7) Y pw) = 1 - cos(27r/N) 

with the scaling coefficient y = 0.88. The final picture which emerges from our analysis 
giving the N dependence of the critical points is shown in figure 1. 
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Figure 1. N dependence of the critica1 points. The full curve is the function 
0.88/(1 -COS 2 7 ~ / N ) .  

The intermediate phase seen for N a 5  is most likely of the Kosterlitz-Thouless 
(KT) kind (Kosterlitz and Thouless 1973), being separated from a high-temperature 
disordered phase and a low-temperature ordered one by infinite-order transitions. 
As evidence for our claim we observe the following. 

The leading-order behaviour of the two-point correlation function is seen to be 
logarithmic (Alcaraz and Jacobs 1982) in the U(l)  limit as is the case in the two- 
dimensional planar model (JosC et al 1977) whose low-temperature phase is KT. Even 
for finite N, the average energy per spin in the intermediate phase is seen to fall on 
the leading spin wave behaviour E = 1/4& Consistent with this we have observed a 
clear signal of a transition from disorder to spin wave behaviour which is a peculiar 
feature of the local nature of standard Monte Carlo methods. To understand this 
effect (Alcaraz et al 1982b), consider slowly cooling a disordered initial state from 
p = 0 through the transition point at /3 = 1 by slightly changing p after each Monte 
Carlo iteration of the entire lattice. In either a disordered or a spin wave phase the 
order parameter-the average spin-vanishes. However, the local (in 8) fluctuations 
in this parameter as measured by Monte Carlo should be very different in the two 
cases. This is because, although in either case the spins assume all allowed values, in 
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a spin wave phase the immediate neighbours of the spin being tested differ only slightly 
from it on the average. In a disordered phase, on the other hand, the difference in 
angle between the spin in question and its nearest neighbours is arbitrarily large. 
Since the updating procedure is only sensitive to local differences, this phenomenon 
will show itself as a quench in the spin fluctuations over small intervals of /3 as the 
system cools to /3 = 1. That this effect indeed occurs in our theory is seen dramatically 
in figure 2. 

Lastly, note that the vanishing of the order parameter in this phase implies the 
vanishing of the disorder parameter as well, since the two are related by duality. This 
further strongly indicates (Alcaraz and Koberle 1981) the existence of a massless 
excitation in this phase. 
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Figure 2. Quench in the fluctuations of the order parameter as the system is cooled 
through the high-temperature transition at B = 1. 
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